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Abstract. The paper concerns semidiscretizations in time of stochastic Maxwell equations
driven by additive noise. We show that the equations admit physical properties and mathematical
structures, including regularity, energy and divergence evolution laws, and stochastic symplecticity.
In order to inherit the intrinsic properties of the original system, we introduce a general class of
stochastic Runge-Kutta methods and deduce the condition of symplecticity-preserving. By utilizing
a priori estimates on numerical approximations and semigroup approach, we show that the methods,
which are algebraically stable and coercive, are well-posed and convergent with order one in a mean-
square sense, which answers an open problem in Remark 18 in [C. Chen and J. Hong, SIAM J.
Numer. Anal., 54 (2016), pp. 2569-2593] for stochastic Maxwell equations driven by additive noise.
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1. Introduction. Consider the following semilinear stochastic Maxwell equa-
tions with additive noise:
(1.1)
edE -V x Hdt = —J.(t,x, E,H)dt — J.(t,x) o dW (¥), (t,x) € (0, T] x D,
udH +V x Edt = —=J,,, (¢, x, E,H)dt — J7 (t,x) odW(t), (t,x) € (0, T] x D,
E(0,x) = Eo(x), H(0,x) = Hy(x), xeD,
nx E =0, (t,x) € (0, T] x 0D,

where o means Stratonovich integral, D C R? is a bounded domain, T' € (0, ), E
is the electric field, H is the magnetic field, ¢ denotes the electric permittivity, and u
denotes the magnetic permeability. We suppose that the medium is isotropic, which
implies that e, p are real-valued scalar functions, i.e., e,u: D — R . Moreover, we
let e,p € L>®(D), e,p > § > 0. The function J : [0,7] x D x R?® x R® — R3 (J
could be J, or J,;,) describes a possibly nonlinear resistor, i.e., an electric current or a
magnetic current, which may depend nonlinearly on the electromagnetic field (E, H).
For example, semiconductors show generally nonlinear voltage-current characteristics.
It is assumed that J satisfies the linear growth and global Lipschitz conditions:

(1.2) [J(t, %, u,v)[ < L(1+ [u] + [v]),
(13) |J(t,X,U1,U1) - J(S,X,U27U2)| < L(|t - S| + |U’1 - u2| + ‘Ul - ’U2|)
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Vx € D, u,v,uy,v1,u2,v2 € R, the constant L > 0. Here | - | denotes the Euclidean
norm, and the function J” : [0,7] x D — R3 is a continuous bounded function with
J” being J7 or J7 . In particular the frequently occurring linear case J. = o.(t,x)E,
Jm = om(t,x)H with some nonnegative functions o, o, is included in the above
assumptions. Throughout this paper, W(t) is a Q-Wiener process with respect to
a filtered probability space (Q, F, {F:}o<i<r,P) with @) being a symmetric, positive
definite operator on U = L?(D). If we denote an orthonormal basis of the space U
by {e;}ien, then W (t) can be represented as

o0
(1.4) W(t) =Y Q%e;Bi(t), t €[0,T],

i=1
where {8;(t) }ien is a sequence of independent real-valued Brownian motions.

The well-posedness of stochastic Maxwell equations has been investigated by the
semigroup approach in [3, 9], by a refined Faedo—-Galerkin method and spectral mul-
tiplier theorem in [8], and by using the stochastically perturbed PDEs approach in
[10]. The regularity of the solution of stochastic Maxwell equations driven by Itd
multiplicative noise is considered in [3], allowing sufficient spatial smoothness on the
coeflicients and noise term. The stochastic multisymplectic structures for stochastic
Maxwell equations in the Stratonovich sense are investigated in [4, 6] for additive
noise and in [7] for multiplicative noise.

The numerical analysis of stochastic Maxwell equations is a recent and ongoing
research subject. There are now a certain number of papers devoted to this field
but many problems still need to be solved (see, e.g., [1, 3, 4, 6, 7, 11] and refer-
ences therein). Particularly, [6] proposes a stochastic multisymplectic method for
stochastic Maxwell equations with additive noise based on the stochastic version of
the variational principle, which has the merits of preserving the discrete stochastic
multisymplectic conservation law and stochastic energy dissipative properties. In [4],
the comparison of three different stochastic multisymplectic methods and the analysis
of the linear growth property of energy and the conservative property of divergence
are studied. In [7], the authors construct an innovative stochastic multisymplectic
energy-conserving method for three-dimensional stochastic Maxwell equations with
multiplicative noise by using a wavelet interpolation technique. For the rigorous con-
vergence analysis of numerical approximations, we refer to the very recent work [3], in
which mean-square convergence of a semi-implicit Euler scheme for stochastic Maxwell
equations with It6 multiplicative noise is investigated. Via the energy estimate tech-
nique and a priori estimates on exact and numerical solutions, the authors show that
the method is convergent with order 1/2 in mean-square sense.

To the best of our knowledge, however, there has been no work in the litera-
ture which considers the infinite-dimensional stochastic Hamiltonian system formula-
tion and stochastic symplecticity for stochastic Maxwell equations. By introducing
two new Hamiltonian functionals, and utilizing the properties of variational deriva-
tives, we can rewrite stochastic Maxwell equations (1.1) as an equivalent infinite-
dimensional stochastic Hamiltonian system form. As a result, in Theorem 3.2 we
show that the phase flow of (1.1) preserves the stochastic symplectic structure w(t) =
Jp dE(t,x) A dH(t,x)dz almost surely. Meanwhile, we present the regularity in the
space D(MF) (k € N) of the solution for stochastic Maxwell equations (1.1), where
M denotes the Maxwell operator. This regularity, together with the adaptedness to
filtration, yields the Holder continuity of the solution in the space D(M*~1) both
in mean-square and in mean senses. Furthermore, the evolution laws of energy and
divergence are also investigated via the formal application of It&’s formula.
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It is important to design numerical methods which can preserve the intrinsic prop-
erties of the original system as much as possible, due to their superiority in long time
simulation and stability, etc. In order to construct stochastic symplectic methods for
stochastic Maxwell equations (1.1), we introduce a general class of stochastic Runge—
Kutta methods to these equations in the temporal direction. By utilizing the structure
of numerical methods and the properties of differential 2-forms, we derive the sym-
plectic conditions on coefficients for the methods to preserve the stochastic symplectic
structure. The existence and uniqueness of the numerical solution are proved for the
general class of stochastic Runge-Kutta methods which is algebraically stable and
coercive. The relevant prerequisite for the mean-square convergence analysis is to pro-
vide the regularity in the space D(M*) and Hélder continuity in the space D(M*~1)
for the original system, and also for the stochastic Runge-Kutta semidiscretizations.
To deal with the difficulty caused by the interaction of the unbounded operator M,
stochastic terms, and the complex structure of Runge—Kutta methods, we make use of
the semigroup approach, which allows the mild solution to be expressed as a bounded
linear semigroup instead of the unbounded differential operator, and a priori estimates
on the operators and semigroup, as well as the coercivity and algebraic stability of the
proposed methods. These estimates are then essential for the error analysis, which
allow us to establish the optimal mean-square convergence rate (see Theorem 4.8). An
immediate consequence of this result is that the order of mean-square convergence is
1, which answers an open problem in [2, Remark 18] for stochastic Maxwell equations
driven by additive noise. The analysis holds for the algebraically stable and coercive
stochastic Runge-Kutta methods. Note that symplectic Runge-Kutta methods are
automatically algebraically stable. As a consequence, the mean-square convergence
order of the coercive symplectic Runge-Kutta methods is 1.

The paper is organized as follows: in section 2, some preliminaries are collected
and the abstract formulation of (1.1) is set forth. Some properties of stochastic
Maxwell equations, including regularity, evolution laws of energy and divergence, are
also considered. Section 3 is devoted to the stochastic symplecticity of stochastic
Maxwell equations. In section 4, a class of semidiscrete schemes is proposed and our
main results are stated: in section 4.1 we give some conditions to guarantee that a
given stochastic Runge-Kutta method is symplectic; in section 4.2 we prove the unique
existence and regularity of the numerical solution of the general class of stochastic
Runge-Kutta methods; section 4.3 is devoted to the proof of the convergence order
of stochastic Runge—Kutta methods satisfying the definitions of algebraical stability
and coercivity.

2. Preliminaries and framework. In this section, we present some prelimi-
naries for the analysis of stochastic Maxwell equations. And an abstract formulation
of (1.1) is set forth. Some properties of stochastic Maxwell equations, including reg-
ularity, evolution laws of energy and divergence, are also considered.

2.1. Notation. Throughout the paper, we will use the following notation.
1. We work with the real Hilbert space H = L?(D)? x L?(D)3, endowed with
the inner product

<<Elll> ’ (EI22> >H - /D@El -Ep + pH, - Hy)dx

VE;,H;,Ey, Hy € L?(D)3, and the norm

()

1/2
= UD (e|Ef® + pl[H[?) dx] vV E,H e L*(D)3.
H
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2. We denote the Maxwell operator by

0 €71V x
(2.1) M_<_M_1Vx 0)

with domain

D(M) = {(fl) cH: M <fl> - <_5Mi1VVXXHE> € H, nx E’aD - 0}

= Hy(curl, D) x H(curl, D),

where the curl-spaces are defined by
H(curl,D): = {v € L*(D)*: V xv € L*(D)%},
Hy(curl, D) : = {v € H(curl, D) : n x v|sp = 0}.

The corresponding graph norm is [|v|[pary == (||lv]|& + HMUH%)I/Q. A fre-
quently used property for Maxwell operator M is (Mu, u)yy =0V u € D(M).

3. The Maxwell operator M defined in (2.1) is closed and skew-adjoint on H
and thus generates a unitary Cop-group S(t) = e on H in view of Stone’s
theorem. A frequently used tool of semigroup is the following estimate (see
[3, Lemma 3.1]):

(2.2) 15() — Id| ccpanm < Ct,
where the constant C' does not depend on ¢.

4. Denote D(M™) the domain of the nth power of operator M for n € N with

1/2
norm [[ul|parmy == ([Jullg + |M"ul|3) ™ fact, the norm || - || p(asny corre-
sponds to the scalar product

(u, v)pmny = (u, v)ym + (M"u, M"v)g.

Moreover, we know that ||ul|pmy < Cllullparmy Yu € D(M™), n < m.

5. Denote HS(U, H) the Banach space of all Hilbert—-Schmidt operators from
one separable Hilbert space U to another separable Hilbert space H, equipped
with the norm

1/2

Tl zsw.m = | D ITn;ll% vI'eHSUH),
j=1

where {n,},en is any orthonormal basis of U.

6. Throughout this paper, the constants C' may be different from line to line.
When it is necessary to indicate the dependence on some parameters, we will
use the notation C(-). For instance, C(T,p) is a constant depending on T
and p.

2.2. Framework. We work on the abstract form of stochastic Maxwell equations
in infinite-dimensional space H:

(2.3) {du(t) = [Mu(t) + F(t,u(t))]dt + B(t)dW (1), t € (0,7],

u(0) = uy,
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where M is the Maxwell operator given in (2.1), u(t) = (ET(t),HT(t)T, ug =
(EL,HI)T. Here F : [0,T] x H — H is the Nemytskij operator associated with
Je, Jin, which is defined by

—e7 1. (t,x, B(t,x), H(t,x))

F(t,u(t))(x) = (—u1Jm(t7x,E(t,x),H(t,x))>’ te0,7], x € D, u(t) € H.

For the diffusion term, we introduce the Nemytskij operator B : [0,T] — HS(Uy, H)
by

e 17 (t, x)v(x)

(B(t)v)(x) = ( LT )v(x)) ,xeD, vely:= Q%U,

such that || B(t)|| gs(u,m < oo Vte€[0,T].

2.2.1. Well-posedness and regularity. First we present the well-posedness
in the Hilbert space H of the stochastic Maxwell equations (2.3). From [3], we know
that conditions (1.2) and (1.3) yield the linear growth and global Lipschitz properties
of the function F), i.e., there exists a positive constant C' depending on §, the volume
|D| of the domain D, and the constant L in (1.2) and (1.3), such that

(2.4) 1t w)lle < O (1 + [lulle),
(2.5) 17 (t,u) = F(s,0)lle < C(It = s + [lu—v]u)

Vt,s € [0,T] and u,v € H.
The following proposition gives the existence and uniqueness of the mild solution
of (2.3), which have been discussed, for example, in [3, 9, 10].

PROPOSITION 2.1. Suppose that conditions (1.2) and (1.3) are fulfilled, and let ug
be an Fo-measurable H-valued random variable satisfying ||uo||Lr () < 0o for some
p > 2. Then stochastic Mazwell equations (2.3) have a unique mild solution given by

(2.6) wu(t) = u0—|—/St—s s, u(s ds—!—/St—s s)dW(s) P-a.s.

for each t € 10,T).
Moreover, there exists a constant C := C(p,T, F, B) € (0, c0) such that

(2.7) sup [lu(t) ||l Lrom < C(1+ [luollLr(o;m))-
te[0,T)

In order to obtain the regularity results of solution of stochastic Maxwell equa-
tions, we need strong assumptions on F and B. Namely, we make the following
assumptions in what follows.

ASSUMPTION 2.1. For an integer a € N, F(t,-) : D(M®) — D(M®) are C*
functions with bounded derivatives up to order 2 for any t € [0, T).

ASSUMPTION 2.2. For an integer 3 € N, B(t) € HS(Uy, D(M?)) for any t €
[0,7).

Note that the condition on @-Wiener process is made implicitly with that of B
in Assumption 2.2, since

1B sy parey) = Z HB(t)Ql/Zej”QD(Mﬁ)v
jEN
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where {e;};jen is the orthonormal basis of the space U = L?*(D). In particular, the

case JT = A1, J7 = — )Xo with some constant vector A1, Ao (see [4]) is included in the

above assumption if BQ'/? is a Hilbert-Schmidt operator from U to D(M?).

Under these assumptions we obtain the regularity of the solution of stochas-
tic Maxwell equations (2.3) in LP(€2; D(M*))-norm, which is stated in the following
proposition.

PROPOSITION 2.2. Let Assumptions 2.1-2.2 be fulfilled with « = B = k, and sup-
pose that ug is an Fo-measurable H-valued random variable satisfying ||uo |l »(o;p(ar)) <
oo for some p > 2. Then the mild solution (2.6) satisfies

(2.8) sup [u(®)ll e ;parry) < C(1+ |luollLoparry)),
t€[0,T]

where the positive constant C' may depend on the coefficients F' and B, p, T.
Proof. The proof is similar to the proof of Proposition 3.1 in [3]. ]

PROPOSITION 2.3. Let ug, F', and B be as in Proposition 2.2, and for any 0 <
t,s <T we have

(2.9) Eflu(t) — U(S)H%(Mk—l) <Clt— 3|p/27
(2.10) IE(u(t) — u(s))llpare—1y < CJt = s,

where the positive constant C' may depend on the coefficients F and B, p, T, and
HUOHLP(Q;D(Mk))-

Proof. The proof is similar to that of Proposition 3.2 in [3]. O

2.2.2. Physical properties. In this part, we consider two important physical
properties of stochastic Maxwell equations (1.1), including the energy evolution law
and divergence evolution law.

Notice that in the deterministic case if we still endow perfectly electric conducting
boundary condition n x E = 0, on 0D, the Poynting theorem states the relationship
satisfied by the electromagnetic energy: O;H(u(t)) = 2(u(t), F(t,u(t)))u, where the
energy is H(u(t)) = [u(t)|2.

Now we investigate the energy evolution law for stochastic Maxwell equations,
which is stated in the following proposition.

PROPOSITION 2.4. Under the assumptions of Proposition 2.1, for any t € [0,T]
we have

H(u(t)) = H(uo) +/ (2<U(8),F(s7u(5))>m + HB(S)H%{S(UO,H)>dS
(2.11) 0

—|—2/0 (u(s), B(s)dW (s))u, P-a.s.

Proof. The proof is based on the formal application of Itd’s formula to the func-
tional H(u) = |lul|%. Since H(u) is Fréchet differentiable, the derivatives of H(u)
along direction ¢ and (¢, p) are as follows, respectively:

(2.12) DH(u)(¢) = 2(u, $)u, D*H(u)(¢,¢) = 2(p, P)m.
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From It6’s formula (see Theorem 4.32 in [5]), we have
H(u(t)) = H(uo) +/ DH(u(s)) (B(s)dW (s))
(2.13) / DH(u(s)) (Mu(s) + F(s,u(s))) s

+ 5 [ D Hu)BER B! as

0
Substituting (2.12) into (2.13) leads to

H(u(t)) = H(ug) + 2/0 (u(s), Mu(s) + F(s,u(s)))uds

2 / (u(s), B(s)dW (3))s + / 1B()|Z15(050,05-

By using the property (Mu,u)y = 0 for any u € D(M), we derive immediately the
result. |

Remark 2.1. Comparing the evolution of the averaged energy, i.e., the expecta-
tion of (2.11), with the deterministic case, we found that there exists an extra term

fg I1B(8) 1351, myds in the stochastic case. That is the effect caused by the additive
noise (see also [4, Theorem 2.1]).

In the deterministic case, it is well known that the electromagnetic field is diver-
gence free if the medium is lossless, i.e., F = 0 in the deterministic Maxwell equa-
tion. The following proposition states the divergence evolution law for the stochastic
Maxwell equations.

PROPOSITION 2.5. Under the assumptions of Proposition 2.1, we suppose that
Je,J, € H(div,D), and J,J;, € HS(Uy, H(div,D)) with H(div,D) = {v €
L*(D)3: V-v € L*(D)}. The averaged divergence of system (1.1) satisfies

E(div (¢E(t))) = E(div (¢Eo)) —E [ divJeds ),
(2.14) i </0 >

E(div (1H(t))) = E(div (¢Hp)) — E </0t divads) .

Proof. Denote ¥(E(t)) = div(eE(t)). Since ¥ is Fréchet differentiable, the deriva-
tives of U along direction ¢ and (¢, ) are

(2.15) DV(E)(¢) = div(eg), D*TU(E)(¢,p) = 0.
By applying It6’s formula formally to W(E(t)), we obtain

U(E(t)) = U(Eg) + /OtD\II(E(s))(EIV % H(s) — 5’1J6>ds

t (E(s))( —e ' IpdW (s
- +/OD\1: E()( JTdw ))

= U(Eo) + /t div (V x H(s)) ds— /t divJ.ds — /t div (J7dW (s))

0 0 0

t t
— W(Ey) — / div,ds — / div (J7dW (s)) ,
0 0
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where the last equality is due to div(V x ) = 0V ¢ € L?(D)3. In a similar manner,
by applying It6’s formula to functional W(H(¢)) = div(uH(t)), we can get

t t
(2.17) U(H(t)) = ¥(Hy) —/ divJ,,ds —/ div (J7, dW (s)) .
0 0
The results (2.14) follow from taking the expectation on both sides of (2.16) and
(2.17), respectively. d
Remark 2.2. If the medium is lossless, i.e., F = 0, or functions J., J,, are

divergence-free, the averaged divergence holds,
E(div (E()) = E(div (Eo)), E(div (4H(¢))) = E(div (uH)).

3. Symplecticity of stochastic Maxwell equations. In [2], the authors in-
troduce the general formulation of an infinite-dimensional stochastic Hamiltonian sys-
tem based on a stochastic version of the variational principle and show that the phase
flow preserves the stochastic symplecticity in phase space with the application to
a stochastic Schrodinger equation. In this section, we consider the corresponding
infinite-dimensional stochastic Hamiltonian system form of stochastic Maxwell equa-
tions (1.1). In what follows, we assume that ¢ and p are two positive constants in
order to obtain the symplecticity.

For convenience, we rewrite stochastic Maxwell equations (1.1) as

3.1) dE — 71V x Hdt = —e 1 (t, 2, E,H)dt — e~ 1J%(¢,2) o AW (2),
. dH + p~ 'V x Edt = —p~ 13, (t, 2, E, H)dt — p=1J7 (¢, 2) o AW (2).

Let G :[0,T] x L*(D)% — L?(D)% be the Nemytskij operator associated with J., J,,
and defined by

p It x, E(t,x), H(t, x))

, t€1[0,T], x € D, u(t) € H.
—571Je(t,X,E(t,X),H(t,X))

(3.2) G(t,u(t))(x) = [

The following lemma states the integrability condition for the existence of a po-
tential H1 (£, u) such that G(t,u) = (mgigf’“), which makes (3.1) an infinite-dimensional
stochastic Hamiltonian system. For simplifying the presentation, we suppose that G
does not depend explicitly on time ¢. The dependence on time causes no substantial

problems in the analysis but just leads to longer formulas. Here and in what fol-

lows, 5;31 is the variational, or functional, derivative which is defined by the following
equation:
~ oM H Ju) —H
Ha(u) = i(Sudx = lim Hau o) Hl(u)
D ou e—0 €

LEMMA 3.1. Let G : L?(D)® — L?(D)® be Gateauz differentiable, and let DG (u) €
L(L?(D)% L*(D)%) be a symmetric operator, i.e.,

<DG(U)¢7 ¢>L2(D)6 = <¢7 DG(u)w>L2(D)6 v ¢a 11[} € L2(D)65
and then there exists a functional Hy : L2(D)® — R, such that G(u) = THa(w)

5 €y
§H -1 6H —1
B = M J,. and S = € J..
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Proof. The functional #;(u) can be defined as
_ 1
(3.3) T (u) = / (u, GO)) L2(pyedA + Cla),
0

where C'(x) is an arbitrary smooth function independent of u. The functional deriva-
tive of H1(u) leads to

e—0 €

aﬁ1<u><¢>=< - ,¢> =ty = [t e6) — Fa(w)]
L2(D)S

e—0 €

1
= hIn1 |:/O <u + €9, G()\u + 6/\¢)>L2(D)6 — <u, G(/\U))LQ(D)ed)\:|

- / 1 <u lim 2 [G(\u + eAg) — G()\u)]> d)
0 0 L2(D)S

e—0 €

1
+ lim
e—0 0

(6, G\ + eX)) L2(pysdA,

where the last step is from the Lebesgue’s dominated convergence theorem and Lips-
chitz condition (1.3). By the definition of Gateaux derivative, we get

§H 1 1
< (;UFU), ¢>L2(D) :/0 )\<’U/7 DG()\U)(b)Lz(D)Gd)\-F/O <(Z), G()\U)>L2(D)6d)\

- </01 (ADG(Au)u + G(Au))dA, ¢> 7

L2 (D)G

where we have used the symmetry property of DG(u). Therefore,

572;;115”) = /U 1 (ADG(Au)u + G(Au))dA = /0 1 d% (AG(Au))dA = G(u). .

Suppose that G in (3.2) satisfies the assumptions of Lemma 3.1; it can be seen that
(3.1) is a stochastic Hamiltonian system, whose formulation of the infinite-dimensional
stochastic Hamiltonian system is given by

dE 0 I][p'VxE+u1J 0 I][p
= " a odW(t)
dH| |-I 0| |e'VxH-¢1J, I 0| |-e1J7
(3.4)
56}]%1 6;'][32
=7 [67-11 dt +1J 5?_[21 odW(t)
/H oH

with I being the 3 x 3 identity matrix, the standard skew-adjoint operator J on L?(D)%
with standard inner product, and the Hamiltonians

1 -~
H, :/ ,(MflE.vXE+5*1H-VXH)dx+H1
D2

and
My = /D (#7197, B — 107 H)dx.
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For simplicity in notation, in the rest of this section, we denote Eq, Hy by e, h,
respectively. The symplectic form for system (3.1) is given by

(3.5) D(t) = /D dE(t, x) A dH(1, x)dx,

where the overbar on w is a reminder that the differential 2-form dEAdH is integrated
over space. Preservation of the symplectic form (3.5) means that the spatial integral
of the oriented areas of projections onto the coordinate planes (e,h) is an integral
invariant. We say that the phase flow of (3.1) preserves symplectic structure if and
only if £5(t) = 0.

Remark 3.1. To avoid confusion, we note that the differentials in (3.1) and (3.5)
have different meanings. In (3.1), E, H are treated as functions of time, and e, h are

fixed parameters, while differentiation in (3.5) is made with respect to the initial data
e, h.

We have the following result on the stochastic symplecticity of stochastic Maxwell
equations (3.1).

THEOREM 3.2. Under a zero boundary condition, the phase flow of stochastic
Mazwell equations (3.1) preserves symplectic structure:

(3.6) w(t) =w(0), P-a.s.
Proof. The formula of change of variables in differential forms implies
_ OE OE oH OH
&(t) _/D (a—de—l—a—hdh) ((Td —&-a—hdh)dx
OENT OH OJEN\T OH
(3.7) 7/0 [de (%) S de }dx+/D [an A (ah) %dh}d
OENT OH OHN\T OE
/ [de A((ae) oh (ae) ah)dh}dx
We set E, = E, = OB H. = 7 and Hy, = oH Now, thanks to the

89 ’ oh>’ on -
differentiability with respect to initial data of stochastic infinite-dimensional equations

(see [5, Chapter 9]), we have

dE, = ( “1V x He +;;?}1IE +%H )dt E.(0) = Id,
. dH, = (- 1V x B — 5;;1 Ee — ;;?;IHG> dt, He(0) =0,

dEp, = ( 1V x Hy + ;E?;IE + %Hth>dt En(0) =0,

dH,, = ( — 'V x Ep — 5;;{; En — ;;?;IH}I> dt, Hy(0) = Id.

From equality (3.7), we get

dw(t) OE\T OH d [ /OE\TOH
“at —/D[d A((ae) ae)de+dh/\dt<<8h) 8h>dh]dx

(3.9)
o f len g ((5) 5~ (5e) G )om] o
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Substituting (3.8) into the above equality, and using the symmetric property of g;?ﬁ,

*H 52H4
5E21) a‘nd 5H2 )

we obtain

/ [de A ( (V x Ho) "H, — BTV x Ee> de|dx
D

+/ [dh A <5—1(v x Hy) Hy — 1 'ELV x Eh> dh} dx

D L

+/ [de A (51(v x He) Hp, — ' EIV x Eh> dh]x
oL

+/ [de A (;L LV x Eo) "By — e 'HIV x Hh>dh]dx
oL

— [ ! [de A (V x He) Hede + dh A (V x Hy) ' Hpdh
D
+de A (V x Hy) Hpdh — de A HIV x thh} dx
+/ ot {de A (V X Ee) Eede +dh A (V x En) Epdh
D

+deA (V x Ee) Endh — de AEIV x Ehdh} dx.
The properties of wedge products lead to

— :/D et [v x Hede A Hede + V x Hpdh A Hydh
+ V x Hede A Hydh — Hede AV X thh} dx
+ /D pt {v x Eede A Ecde + V x Epdh A Epdh
(3.10) +V x Ecde A Epdh — Eqde AV x Ehdh} dx

:/ e (d(V x H) AdH) + 1~ (d(V x E) A dE) dx

0 0
— -1 —_ .
_/Dg (8x(dH2/\dH3)+ 8y(dH3/\dH1)+ 82(

g dH, A ng)) dx

N / = (f’mEQ NdBs) + 2 (@B A dEy) + (B, A dEg)) dx.
D ox dy

0z

From the zero boundary condition, we immediately derive the result. |

4. Stochastic Runge—Kutta semidiscretizations. In this section, we will
study the stochastic Runge—Kutta semidiscretizations for stochastic Maxwell equa-
tions and state our main results. For time interval [0,T], we introduce the uniform
partition 0 = tg < t; < --- <ty = T with7 = T/N. Let AW = W (t,11)—W(t,),
n=0,1,...,N — 1. Applying s-stage stochastic Runge-Kutta methods, which only
depend on the increments of the Wiener process, to (2.3) in the temporal direction,
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we obtain
(4.1a)

Upi =u" +7 Y aij (MUnj + F(tn + ¢;7,Unj)) + Y _ @i B(tn + &) AW,
j=1 j=1

(4.1b)

u =+ 7Y b (MU + F(tn + 67, Uni)) + > biB(tn + &) AW™ !

i=1 i=1

fori=1,...,sandn=0,...,N—1. In what follows, A = (aij)
are s X s matrices of real elements while b = (by,...,bs)T and b = (by, ..., b,)T are
real vectors, and ¢; = 2;21 aij, G = Z;:l @jj.

In order to prove, for a fixed n € N, the existence of a solution of (4.1a)—(4.1b),

for which the implicitness may be from the drift part, we first introduce the concepts
of algebraical stability and coercivity for a Runge-Kutta method (A, b).

DEFINITION 4.1. A Runge—-Kutta method (A,b) with A = (aij):jzl and b =
(bi):zl 1s called algebraically stable if b; >0 fori=1,...,s and

and ;{ = (Fd”)

sXs SXs

S .
ij=1 with m;; = biaij + bjaﬁ — blbj
is positive semidefinite.

DEFINITION 4.2. We say that a Runge—Kutta matriz A satisfies the coercivity
condition if it is invertible and there exists a diagonal positive definite matriz K =
diag(k;)s_; and a positive scalar o such that

(4.3) uW' KA u > auTKu  Vu e R.

The coercivity plays an important role in the existence of a numerical solution of
Runge-Kutta methods. To present more clearly the stochastic Runge-Kutta methods
(4.1a)—(4.1b), we give two concrete examples.

Ezample 1 (implicit Euler method). The implicit Euler method is an implicit
stochastic Runge-Kutta method with Butcher tableau given by

111 1]1
17 1

If we apply the implicit Euler method to stochastic Maxwell equations (2.3), we obtain
the recursion

Uy =u"+ T(MUnl + F(tny1, Unl)) + B(ty) AW,
un+1 =u" -+ T(MUnl + F(tn+17 Unl)) + B(tn+1)AWn+1’

where we abbreviated ¢, 11 = t,, + 7. Clearly, we have U,; = u™! and hence we can
write the implicit Euler method compactly as

(4.4) Wt ="+ T(Mu"+1 + F"+1) + Bt AW

where F"*! = F(t,1,u") and B"*! = B(t,,1). By introducing operator SIF =
(I —7M)~1, we can write the equivalent form of implicit Euler method as

(4.5) u™tt = Sy 4 7 SIEFT 4 SIE T HI AW
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Note that the implicit Euler method is algebraical stable with M = 1 and satisfies
the coercivity condition.

Ezample 2 (midpoint method). The midpoint method is another example of an
implicit stochastic Runge-Kutta method which is given by

1/2 1{2 7 1/2 1{2_

If we apply the midpoint method to stochastic Maxwell equations (2.3), we obtain
the recursion

T 1
Unl — " + 5 (MUnl + F(tn+1/27 Unl)) + §B(tn+1/2)AW7L+1’

un—i-l = u” + T(MUnl =+ F(tn+1/2> Unl)) + B(i’n+1/2)AVVTH-17

where we abbreviated ¢,,1/2 = t, + 7/2. Clearly, we have U,y = (u"*! +u™)/2 and
hence we can write the midpoint method compactly as

(4.6) u" =" 4 gM(uM'1 +u™) + TF"tE 4 Brts AL

where Ft2 = F(t s (U + u"*1)/2) and B"tz = B(t ntd)- By introducing op-
erators SMd = (T — TM) YI+ ZM), and TMY = (I — ZM)~!, we can write the
equivalent form of the midpoint method as

(4 7) u’n+1 — SMidun 4 TTMian+% 4 TMidBn+%Aw’n+1

N T T T N

Note that the midpoint method is algebraically stable with M = 0, which implies
stochastic symplecticity (see Theorem 4.3) and satisfies the coercivity condition.

4.1. Symplectic condition of stochastic Runge—Kutta semidiscretiza-
tions. In this subsection, we analyze the condition of symplecticity for stochastic
Runge-Kutta semidiscretizations (4.1a)—(4.1b).

THEOREM 4.3. Assume that the coefficients a;;,b; of stochastic Runge-Kutta
method (4.1a)—(4.1b) satisfy
(48) mgj = biaij + bjaji — bibj =0

Vi,j = 1,2,...,s. Then under a zero boundary condition, the stochastic Runge—
Kutta method (4.1a)—(4.1b) is stochastically symplectic with the discrete stochastic
symplectic conservation law

ot = / dE" T A dH P ldx = / dE" AdH"dx = T", P-a.s.
D D
Proof. Tt follows from (4.1a) and (4.1b) that

S

52
(4.92) AU,; = du™ + 7 Z ayMdUy,; + 7 Z ail 55 Hl AU,
Jj=1
n+1 5 Hl
(4.9b) du™ = du™ + 7 Z b;MdU,; + 7 Z bill 55 Ui,

i=1 i=1
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67{1
ou )

67—(1

where we use F' = J and 5 is the second order variational derivative. There-

fore, we have

du T A Jdu T = du™ A Jdu

<du”+72b MdUm-i-TZb J6 Hl Um)

i=1 i=1

AJ (du +TZb MdUm+TZbJ5 Hl n) — du™ A Jdu™

i=1

(4.10) =7 Z bi (du™ A JMAU,,; + MAU,,; A Jdu™)

i=1

+er (du /\JI2

i=1

07 2 L0, A Jdu” )

ni

27-11 52 7—[1

72 Z bib; (MdUm AIMAU, + I =0 AU AT

,Jl

Um—)

2
+ 72 Z bib; (MdUm Ap2t HldUnJ +J5 HldUm AJMdUm)

3,j=1

From (4.9a), we have
2 52
du” = dU,,; — TZa”MdUnJ TZ(IUJ Hl Unj-
Jj=1

Substituting the above equation into the first and second terms on the right-hand side
of (4.10), we obtain

du™ T A Jdu T = du™ A Jdu™

=73 i (AUns A IMAU; + MdUp; A JdU,;)

=1
5 (527‘71 5 Hl
2
(4.11) +72 3" (biby — biai; — bjag;) (MdU,; A TMAU,)
i,j=1

+ 27° Z (bzb] - biaij - bjaji) <MdUm /\JQCS Hl dUng)

ij=1

S 2
+72 3" (biby — bsai; — bjay;) <J55H21 AU,; A .,]]26 Hy dUm> .

ij=1

From J2 = —I (I is the 6 x 6 identity matrix), and the symmetry of 2 S M1 the value
of the second term on the right-hand side of (4.11) is zero. From the symplectic
condition (4.8), the third, forth, and fifth terms on the right-hand side of (4.11) are
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also zeros. Therefore,

du A Jdu™ T = du” AJdu™ =7 b; (dUni A IMAU,; + MdUp; A JAU,;) -

i=1

Recalling v = (ET, HT)? and the Maxwell operator M in (2.1), and using the skew-
symmetry of J, it yields

dE"*' AdH™ — dE" A dH"

1
(4.12) =3 (du"t' A Jdu™tt — du™ A Jdu™)

=73 bi (AUp; AIMAU,,;)

i=1

=—7Y b [p7 dEp; A (V x dEp;) + £ dHp; A (V x dH,y)]
=1

Thereby, by using a similar approach as in the last two steps of (3.10) it holds that

/ dE" T AdH P Hdx — / dE™ A dH™dx
D D

= —eri /D [0 dE; A (V x dEy;) + 7 'dH,y; A (V x dH,y;)] dx = 0.
=1

Thus, the proof is completed. 0

Remark 4.1. Note that a stochastic symplectic Runge-Kutta method automati-
cally satisfies the algebraic stability condition.

4.2. Regularity of stochastic Runge—Kutta semidiscretizations. In this
subsection, we present the results of well-posedness and regularity of a numerical
solution given by a stochastic Runge—Kutta method (4.1a)—(4.1b) satisfying the alge-
braical stability and coercivity conditions.

First, we utilize Kronecker product to rewrite (4.1a)—(4.1b) in a compact form,

(4.132) U, =1,0u" +7(A® M)U, +7(A® ) F"(U,) + (A® I)B"AW"™ 1,
(4.13b)  w"Tt =u" 47 (b @ M)U, +7(bT @ 1) F™(U,) + (b @ I)B"AW" 1,

where in the rest of the paper, 1, = [1,...,1]7, I denotes the 6 x 6 identity matrix,
and

Una F(tn + T, Unl) B(tn + EIT)
N ) BT s R
Ups F(tn + cst,Upns) B(t, + ¢s7)

Next, we give some useful estimates on the operator A ® M.

LEMMA 4.4. Let Igsxes be the 6s x 6s identity matriz. Suppose matriz A satisfies
coercivity condition (4.3). Then there exist positive constants C such that

(i) || (Tosxes — T(A® M) || cmosmey < C

(ii) [[{6sx6s — (Iosxos — T(A® M))_l | ceparyyssmsy < CT,
where H* :=H xH x --- x H, and (D(M))* = D(M) x D(M) x -+ x D(M).
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Proof. In order to estimate the operator Igsxgs — (Igsxes — T(A @ M))_l, we de-
note v" ! = (Igsxes — T(A® M)) " o™, where v = ((v™1)7, (v™2)7, ..., (v”’s)T)T
with v™* € H for each i = 1,2,...,s. And then {v"},en is the discrete solution of
the following discrete system:

(4.14) = v"—l—T(A@M)U”"'l.

Supposing that A satisfies the coercivity condition, we apply (v"*!, (KA™! @ I)-)gs

to both sides of (4.14) and get

Wt (KA @ D)o e = (0" (KA @ I)v™ )
(4.15) R X
+ 7" (KA @ 1) (A® M)v™ )y,

Since

<Un+1’ (ICA_l ® I)Un+1>Hs > azkinvn—o—l,i

i=1

12 > amin{k; Yo" 2 = allo" 2

and

(W (KA @ 1) (A® M) = (K © M) ).

we get for (4.15)
C
o™l < ™ (KAT @ D)o < yllo™ I + —llv” e,
v

where C' depends on |K| and |A~!|. Taking v = &/2 leads to

o™ e < Cllo™ Iz

where the constant C' depends on @&, |K| and |A™!|. It means that

(4.16) | (Issxos — 7(A® M) ™3 < Ol

Thus we prove the first assertion. Similarly, we can show that
I(A® M)+ 2. < Ol (4@ M)v" ..
From
(17)  [Usexos = (4 M)~ Iouxa] 0" = 0™ — 0" =74 M)+,
it follows that
| [Toones = (A @ M) = Tosss| 07 = T4 © MY+ s
< O7[(A® M) |lu: < OTl[v"[[(par))+

which leads to the second assertion. Hence we finish the proof. 0

Now we are in the position to present the existence and uniqueness of the numer-
ical solution given by the stochastic Runge-Kutta method (4.1a)—(4.1Db).

THEOREM 4.5. Under the assumptions of Proposition 2.1, if in addition B(t) €
HS(Uy, D(M)) for any t € [0,T], and if Runge—Kutta method (A,b) is algebraically
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stable and coercive, then for any p > 2 and a fired T =ty > 0, there exists a unique
H-valued {F;, }o<n<n-adapted discrete solution {u™; n=0,1,...,N} of the method
(4.1a)—(4.1b) for a sufficiently small T < 7% with 7 := 7*(||ug||lm, T'), and a positive
constant C := C(p,T, F, B) such that

P n||p
(415) i Bl < C (B +7).
. " pio. < p(O)- .
(4.19)  axy lw™ || o) < C (1 + [JuollLe(o.m)

Proof. We only present the proof for p = 2 here, since the proof for general p > 2
is similar.

Step 1: Emistence and {Fy, Yo<n<n-adaptedness. Fix a set Q c Q, P(Q) = 1
such that W (t,w) € U Vt € [0,7] and w € Q. In the following, let us assume that
w € . The existence of iterates {u™; n = 0,1,...,N} follows from a standard
Galerkin method and Brouwer’s theorem, in combining with assertions (4.18)—(4.19).

Define a map

A: HxU — PH), (u",AW™) = A", AW™H),

where P(H) denotes the set of all subsets of H, and A(u™, AW™1) is the set of
solutions u™*! of (4.1). By the closedness of the graph of A and a selector theorem,
there exists a universally and Borel measurable mapping A, : H x U — H such that
An(s1,82) € A(s1,82) V(s1,82) € H x U. Therefore, the F; . -measurability of u"*!
follows from the Doob—Dynkin lemma.

Step 2: Proof for 4.18. From the compact formula (4.13a) and the invertibility of
A, we get

n+1

(4.20)
-1 ~
Un =(Tosxes —7(AQ M)) [ @u" + (A0 1) F"(U,) + (Ae T)B AW+,
Using assertion (i) of Lemma 4.4, we obtain
|Unl3e < Cl1s @ u™ +7(A®T)F™(U,) + (A® I) B"AW™ |2,

< Ollu™f +Cr2 Y IIE™|f +C Y IIB AW |}
i=1 i=1

4.21 s s )
(421 <Ol 2+ O Y (L4 [Unl2) + S 1B AW 2

i=1 i=1
< Cllu"|f + C* + Cr2||Unllfz + > IBMAW™ |,
i=1
where F™ = F(t,+¢;7,Up;) and B" = B(t,+¢;7),i=1, 2, ..., s. Taking expectation
on both sides of (4.21), we have

(4.22) E||Unlls < CEu"llE + CT + CT°El|Unllf--

For a sufficiently small step size, by Gronwall’s inequality, one gets

E||Un|f < CEllu™|f + CT.

Because of the identity > ;_, |Unil|Z = |Unl

2., the proof of (4.18) is completed.
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Step 3: Uniqueness. The uniqueness of the discrete solution follows from the
uniqueness of Uy, 1 =1,...,s.

Assume that there are two different solutions U,, and V,, satisfying (4.13a), and
then it follows that

(4.23) Up =V =7(A@ M) (U, = Vo)) + (AR I)(F™(U,) — F™(V,,)),
which is equivalent to
(4.24) Up — Vy = T(IGSXGS —r(A® M))_l(A ® 1) (F™(Un) — F"(Vy)).

From assertion (i) of Lemma 4.4 and the global Lipschitz property of function F, it
follows that

(4.25) [Un = Vil

He < CT”Un - VnH]HIS-

Obviously, when the time step 7 is sufficiently small, the internal stages U,; are
unique, and hence the discrete solution «™*! is unique.
Step 4: Proof for 4.19. We start from (4.1b) to get

(4.26)

+
H

S

2
giBniAwn+1

i=1

™ = lla™ 1 + |17 b (MU + F™)

i=1

+2<u”, eri(MUni+F"i)> +2<u", ZEBM’AW"H>
H H

i=1 i=1

+2<T§:bi(MUm+Fm), ES:E-B"Z'AW"“> :
H

i=1 =1

H

From (4.1a), we know that
(427) u" = Unz — T Z Q4 (MUnJ + Fn]) - ZaijanAWnJrl,
Jj=1 j=1
and then substitute (4.27) into the first term of the second line on the right-hand side
of (4.26) to get
21 bi(u", MUp; + F™)g
i=1

s s
=21 b(Uni, MUpi + F™)u =27 > biaij(MUpj + F™, MUp; + F™)g

i=1 =1
s . .
— 27 Z bz-Ziij <Bn]AWn+1, MU,,; + F7”>H
ig=1
= QTsz'<Um', FMyy — 72 Z (biaij + bjaj;) (MUy; + F™, MUy + F™)g
i—1

ij=1

— 2T Z bﬁij <anAWn+1, MU,,; + Fni>]H[,

ij=1
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where in the last step we have used the fact (Uy,;, MU,;)m = 0. Combining the above
equality with (4.26), we get

(4.28)

™I = " + Zb BY AW

=1

+272b iy F™g

S
+ 723 (bibj — biaij — bjaz) (MUy; + F™, MU,; + F™)y

i,j=1

+ 2<u”, ZEB’“AW”“> + 27 Z — bia; ) (BY AW MU,,; + F™)y.

=1 3,j=1

Since the method (A4, b) is algebraically stable, the second line of (4.28) is not positive,
and then we end up with

(4.29)
s 2 s
a1 < i+ || S BB aw| 2szi<Um-, P
i=1 H i=1 H
+2<u", ZE—B”’AW”“> +2r Z — by ) (BYAW™ MU, + F™)y
=1 i,j=1

< [l [ff+ C(L+7) Y BHAW™ 4 Cr Y [M(B™AW™ )|
i=1 i—1
+ 07 Y _Unillfi + C7 Y IE™[f+207 Y bifUniy F™ ).
i=1 i1 —

Applying expectation and using conditions on F', B, and @ leads to

(4.30) Ellu™*[E < Efu

Substituting (4.18) into the above inequality, we get
(4.31) Ellu" ™ E < (14 C7)E|u™||E + C,

which by Gronwall’s inequality means the boundedness of numerical solution. There-
fore we complete the proof of (4.19). ad

Remark 4.2. Note that for the well-posedness of a stochastic Runge-Kutta method,

we require the additional spatial smoothness assumption on function B, which comes
from the term || M (B™AW"™)||2 and needs sup;e(o 7 | B(t)|| 5swo,p(ar)) < 00
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Remark 4.3. (a) If we substitute (4.27) into the second term of the second line
on the right-hand side of (4.26), then (4.28) will become

S S
"M = "l + 27 Y (Ui, F™) +2 Y 0i{Uni, BYAW™ g

i=1 =1

+ 7'2 Z (bibj — biaij — bjaji) <MUnJ + F‘"j7 MU, + Fm>H

4,J=1

+ 27 Z (bigj — blZi” — Ejaji) <anAW"+17 MU,,; + Fm:>H

4,j=1

+ 3 (biby — biai; — byays) (B AW, BUAW )y
ij=1
Supposing that the coefficients of the stochastic Runge-Kutta method (4.1a)—(4.1b)
satisfy

bibj — biaij — bjaji = 0, bigj — biZiij —Ejaji = 07 ?);/57 _gi?iij —EjZiji = 0,

then we obtain the following discrete energy evolution law:

Hw"™™) = H@") + 27 Y bi(Uni, Faids +2 Y 0i(Uni, Bus AW™ ),
i=1 i=1
which can be considered as the discrete version of (2.11).

(b) The evolution law of discrete averaged divergence of stochastic Maxwell equa-
tions (4.1a)—(4.1b) is

E(div(eE"*")) = E(div(eE")) — 7E lz bidiv(Je,m)] ,

=1

S
E(div(eH"*!)) = E(div(éH")) — 7E [Z bidiv(mem)] :
i=1
which can be considered as the discrete version of (2.14).

Comparing the above cases (a) and (b) with the continuous cases (2.11) and
(2.14), respectively, we may observe that the approximation of physical properties
(e.g., averaged energy, averaged divergence) can be improved by choosing proper
parameter s and the coefficients b;, ci,gi, ¢; of stochastic Runge-Kutta method (4.1a)—

(4.1b), since (b;, ¢;) and (b;, ¢;) are quadrature formulas.

Now we are in the position to discuss the regularity in D(M*) (k € N) of the
numerical solution given by algebraical stable and coercive stochastic Runge-Kutta
method (4.1a)—(4.1b), whose proof is similar to Steps 2 and 4 of Theorem 4.5.

PROPOSITION 4.6. Suppose that Assumptions 2.1 and 2.2 are satisfied with o = k
and B = k + 1, respectively, and suppose the initial data ug € LP(Q;D(MF)) for
some p > 2. Then for the solution of (4.1a)—(4.1b), there exists a positive constant
C:=C(p,T,F,B) such that

(4.32) max Bl Unilpae) < C(Eflu" 5 ey +7)s
(4.33) ax ™| o@iparsyy < C(1+ w0l Lo@ipiarsy))-
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PROPOSITION 4.7. Under the assumptions of Proposition 4.6, we have
(4.34) Ellu™ — w5 pnny < CTP/2,

(4.35) B = u™) | p(ae—1y < CT.

n+1

Moreover, if u is replaced by U,;, the above estimates still hold.

4.3. Error analysis of stochastic Runge—Kutta semidiscretizations. Mo-
tivated by answering an open problem in [2, Remark 18] for stochastic Maxwell equa-
tions driven by additive noise, we establish the error analysis in the mean-square sense
of stochastic Runge-Kutta method (4.1a)—(4.1b) in this subsection.

Recall that the strong solution of the stochastic Maxwell equations (2.3) is

(436) w(tnsn) = ults) + [ Mu(t)dt + / " Pt u(t)dt + / " A,

tn n n

Substituting (4.20) into the second term on the right-hand side of (4.13b) leads to the
following formula for the discrete solution:

(4.37)
-1
u7"+1 :un—|—T(bT®M) (I6s><65 _T(A®M)) <1S®un)

+ 7" @ I)F™(U,) + 72 (b7 ® M) (Iﬁsxﬁs —r(A® M)f1 (Ao I)F"(U,)
+ (" @ B AW 4 (47 @ M) (Iosxes — 7(A® M))_1 (A2 DB aw™).

Let €™ = u(t,) — u™. Subtracting (4.37) from (4.36), we obtain

tn _
el = en 4 / " Mu(t)dt — (67 © M) (Zosxos = (4@ M) (1w un)
t

n

I

+ / " R ult)dt — (67 © 1) P (Uy)

n

I,

(4.38) — 720" @ M) (Iﬁsxﬁs -7(A® M)>71(A ®I)F"(Uy)

11

tnt1 N
+ / B(t)dw(t) — (b" ® I)B"AW™ !
t

n

11,
—7(b" @ M) (Iﬁsx6s -7(A® M))_1 ((ﬁ@ ])B"Awn+1)

111,
=" +1+11, — 1T, + I11I, — ITI,,.

Taking || - [|3-norm yields
lle™ IE = lle™ I + ITIE + IT0IE + [T + 2(e™, Dm + 2(e™, e + 2(e™, Mg
+2(I, 1Dy + 2(I, 1Ty + 2(IL, IT)
< lle™ I + 3ITlE + 2(e™, D + 3|TLIE + 2(e”, Wz + 3| + 2(e”, I,
where II = II, — II, and IIT = III, — III,.
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Step 1: The estimates of terms ||I||Z and (e",I)y. From (4.38), we have
(4.39)
tn+t1
I :/ (Mu(t) — Mu(t,))dt +7Me"
t

n

Iq

M = (b7 @ M) (Tosxes — T(A® M))*l(ls S = Ty + M T,

Iy

It follows from assertion (2.9) with p = 2 and k = 2 of Proposition 2.3 that

trni1
E|LIR < 7 / Ellu(t) — u(tn) B dt < 7%,
t

n

and from assertion (2.10) with k& = 2 of Proposition 2.3 that

tnt1
BB 17, <7 [ IEGult) - u(ta) 7, )b < O,
t

n

where the positive constant C' depends on T and coefficients F' and B.
From Propositions 2.2 and 4.6 with p = 2 and k = 2, we know that

I Mem [ = —72(e”, M2em)s < rlen |+ O (M 2u(tn) | + M2 1)
< 7l + o,
and from the skew-symmetry property of operator M
(e", TMe™y =0,

where the positive constant C depends on T and coefficients F' and B.
Under the assumption Zle b; = 1, we know that

(" @I) (1, ® Mu™) = (b"1,) ® (IMu™) = (Z bi> ® (Mu™) = Mu™.

Since bT @ M = (b7 @ I)(Lsxs @ M) and (Lixs @ M)(A® M) = A M? = (A®
M) (ISXS ® M) with Is«s being the s X s identity matrix, and s being the stage of
Runge-Kutta method, we have

(" & M) (Lonxos — 7(A@ M) (1 @)
(4.40) T eI (Iﬁsxﬁs —r(A@ M))fl(lm ® M) (1, @ u™)
= (0" @ D)(Ioxes — 7(A 8 M))il(ls ® Mu™).
Hence for term I, we get

I =7(b" @ I) (1 @ Mu") = 7(b" @ I) (Igaxss — 7(A® M)) ™" (1, © Mu™)

@4y _ (T ® I) [IGSXGS — (Issxes — T(A® M))ﬂ (1, ® Mu™).
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By Lemma 4.4(ii), we get

ITp|lm < CT H [16$><6$ — (losxes — T(A® M))_l] (1 ® Mu™)

. < O |u" b2y,

and then
E|LI < CrE[u" |y < OT"

Therefore,

E(1% < CE|L. [ + CE[rMe" |5 + CE|L[f < CTE[le®||F + C7°,
E<€n, I>H = ]E<6n, E(Ia‘Ftn)>H -+ E<@n7 Ib>H
< 7E[|e"||f + O E||E(L|F, )IIf + C7 7 E[L|f < TElle™ | + OT°.

Step 2: The estimates of the terms ||Il|jg and (", I)g. For term II,, we recall
that >0, b; =1,

1, — / o (P(tue)) - Z b (tn + i, Una) ) dt = 7( F(ty, ultn) = F(t, u") )

n

tnt1 S
+ / (F(t, u(t)) = F(ty, u(tn))dt +ry b (F(tn, u™) — F(tn + ¢, Um-)).
tn i=1
From the global Lipschitz property of F', we have

tnt1
M, |3 < C72|le™ |1 + CT* + CT/ [u(t) = u(t) gt + CT2||Uni — ™1
t

n

The assertion (i) of Proposition 2.3 and the estimate for U,; — u™ in Proposition 4.7
lead to

E|IL||% < CT*E|e"||E + C3.

The estimate of E||E(I1,|F;, )| is technical. In fact, taking the term

/t ” (P(u(t) ~ Fu(t,) )at

in II, as an example, where we suppose that F' does not depend explicitly on time t.
The dependence on time causes no substantial problems in the analysis but just leads
to longer formulas.

Thanks to Taylor’s formula, we have

/ttnﬂ (F(u(t)) - F(u(tn)>dt = /ttn+1 F' (u(ty)) (u(t) — u(tn))dt

1

o3 f " ) ()~ utt), ) ule)dt

n

where ug is some point between u(t,) and u(t). The estimate of the second term
in the above equation is based on assertion (i) of Proposition 2.3, which gives order
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O(7%) in the mean-square sense. For the first term, we apply conditional expectation
first,

(4.42)
E (/t T () (ut) — ultn))dt

]-'tn> - /tt+ F’(u(tn))IE<(u(t) —u(tn))‘]-'tn>dt7

where the adaptedness of {u(t)}:cjo,7) and the properties of conditional expectation
are used. Then by the assertion (ii) of Proposition 2.3, we know that (4.42) gives
order O(7?*) in the mean-square sense.

Hence, by this approach we can show that

E|E(IL|Fy, )|l < CT°Elle” [l + C*.

For term II,,, we have
1, = 72 (67 @ 1) (Iixs © M) (IGMS —7 A®M))_1(A®I)F”<Un)
(4.43) =72(b" @) (Iﬁsxes —7(A® M))_l (Iixs ® M) (A® 1) F™(U,,)
= 2 (67 @ 1) (Touxos — 7(A@ M) (A8 1) (Ics © M)F"(U,).
and hence from (4.16)
181 < € (Touxn —7(A@ M)~ (A® 1) (T ® M) F (Ui
<CTP(AT) (Isxs ® M)F"(Up)|lu= < CT*|F™(Un) || p(arys

<O (1 + |Unllpeanys),

which leads to E|[IL,||Z < C7*.
Therefore,

E|l)E < CT°Elle” || + C7?,

and
E(e", My = E(e", E(IL,| 7, ) )u — Ee", II,)m < CTE[|le™||% + C7°.

Step 3: The estimates of the terms ||III||x and (e, I1I)g. For term III,, we recall
that > 7, b; = 1, and then

(4.44) 1II, = /t o (B(t) - i@Bm‘) AW (1) = /t " ZS:E ()~ B )aw(p),

=1
) tnt1
E|IIL |5 = /
t

n

and hence

s 2

S b (B(t) - B’”)

i=1

dt < 073,
HS(Up,H)

For term III;, similarly to I, we have
—1 ~
1, = 76" @ 1) (Ioxs @ M) (Iosnes —7(A2 M) (A2 1) B AW )
—1 ~
=7 (0" @ 1) (Tooxss — T(A@ M) (Loxs @ M) (A 1) B AW™H)

=7 (0" @ 1) (Tooxes — 7(A M))_l(ﬁ(zo 1) (Ioxs ® M) (B"AW™H),
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and hence from (4.16)

2

-1 -
BT < O || (Tooxes = 7(A@ M) (A0 1) (Iox, ® M) (B"AW™)

2

e
< 07 |(A@ 1) (Ioxs @ M) (B AW 1)

< C73.

Hs

Therefore,
E|IZ < Cr3, E{e", )y = 0.

Step 4: Application of discrete Gronwall’s lemma. Combining all the estimates
in Steps 1-3, we get
Elle"*[f < 1+ C7)E[e" || + C72,

which by the discrete Gronwall’s lemma leads to

1
sup (EH@"H]%I) ’ <CrT.

0<n<N

Now, we are able to present our main result, which states the mean-square con-
vergence of the above stochastic Runge—Kutta method (4.1a)—(4.1b) and also provides
a rate for this mean-square convergence.

THEOREM 4.8. Under the assumptions of Proposition 4.6 with k = 2 and in ad-
dition suppose that >, _,b; = > ., b; = 1. Then, there exists a positive constant C
such that

1
(4.45) max (E|u(ta) - u"3)* < .

where C' depends on T, ug, and coefficients F' and B, but is independent of T and n.

From Remark 4.1, we derive immediately that the mean-square convergence order
of symplectic Runge-Kutta methods is one.

COROLLARY 4.9. Under the assumptions of Theorem 4.8, for symplectic Runge—
Kutta methods we have

1
ni2\ 2
(4.46) (max (Eflu(t,) —u"F)* < O,

where the positive constant C depends on T, ug, and coefficients F' and B, but is
independent of T and n.
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